OWASP Testing Guide
  • Foreword by Eoin Keary
  • Frontispiece
  • Introduction
  • The OWASP Testing Framework
    • The Web Security Testing Framework
    • Penetration Testing Methodologies
  • Web Application Security Testing
    • Introduction and Objectives
    • Information Gathering
      • Conduct Search Engine Discovery Reconnaissance for Information Leakage (WSTG-INFO-01)
      • Fingerprint Web Server (WSTG-INFO-02)
      • Review Webserver Metafiles for Information Leakage (WSTG-INFO-03)
      • Enumerate Applications on Webserver (WSTG-INFO-04)
      • Review Webpage Content for Information Leakage (WSTG-INFO-05)
      • Identify Application Entry Points (WSTG-INFO-06)
      • Map Execution Paths Through Application (WSTG-INFO-07)
      • Fingerprint Web Application Framework (WSTG-INFO-08)
      • Fingerprint Web Application (WSTG-INFO-09)
      • Map Application Architecture (WSTG-INFO-10)
    • Configuration and Deployment Management Testing
      • Test Network Infrastructure Configuration (WSTG-CONF-01)
      • Test Application Platform Configuration (WSTG-CONF-02)
      • Test File Extensions Handling for Sensitive Information (WSTG-CONF-03)
      • Review Old Backup and Unreferenced Files for Sensitive Information (WSTG-CONF-04)
      • Enumerate Infrastructure and Application Admin Interfaces (WSTG-CONF-05)
      • Test HTTP Methods (WSTG-CONF-06)
      • Test HTTP Strict Transport Security (WSTG-CONF-07)
      • Test RIA Cross Domain Policy (WSTG-CONF-08)
      • Test File Permission (WSTG-CONF-09)
      • Test for Subdomain Takeover (WSTG-CONF-10)
      • Test Cloud Storage (WSTG-CONF-11)
      • Testing for Content Security Policy (WSTG-CONF-12)
    • Identity Management Testing
      • Test Role Definitions (WSTG-IDNT-01)
      • Test User Registration Process (WSTG-IDNT-02)
      • Test Account Provisioning Process (WSTG-IDNT-03)
      • Testing for Account Enumeration and Guessable User Account (WSTG-IDNT-04)
      • Testing for Weak or Unenforced Username Policy (WSTG-IDNT-05)
    • Authentication Testing
      • Testing for Credentials Transported over an Encrypted Channel (WSTG-ATHN-01)
      • Testing for Default Credentials (WSTG-ATHN-02)
      • Testing for Weak Lock Out Mechanism (WSTG-ATHN-03)
      • Testing for Bypassing Authentication Schema (WSTG-ATHN-04)
      • Testing for Vulnerable Remember Password (WSTG-ATHN-05)
      • Testing for Browser Cache Weaknesses (WSTG-ATHN-06)
      • Testing for Weak Password Policy (WSTG-ATHN-07)
      • Testing for Weak Security Question Answer (WSTG-ATHN-08)
      • Testing for Weak Password Change or Reset Functionalities (WSTG-ATHN-09)
      • Testing for Weaker Authentication in Alternative Channel (WSTG-ATHN-10)
      • Testing Multi-Factor Authentication (MFA) (WSTG-AUTH-11)
    • Authorization Testing
      • Testing Directory Traversal File Include (WSTG-ATHZ-01)
      • Testing for Bypassing Authorization Schema (WSTG-ATHZ-02)
      • Testing for Privilege Escalation (WSTG-ATHZ-03)
      • Testing for Insecure Direct Object References (WSTG-ATHZ-04)
      • Testing for OAuth Authorization Server Weaknesses
      • Testing for OAuth Client Weaknesses
      • Testing for OAuth Weaknesses (WSTG-ATHZ-05)
    • Session Management Testing
      • Testing for Session Management Schema (WSTG-SESS-01)
      • Testing for Cookies Attributes (WSTG-SESS-02)
      • Testing for Session Fixation (WSTG-SESS-03)
      • Testing for Exposed Session Variables (WSTG-SESS-04)
      • Testing for Cross Site Request Forgery (WSTG-SESS-05)
      • Testing for Logout Functionality (WSTG-SESS-06)
      • Testing Session Timeout (WSTG-SESS-07)
      • Testing for Session Puzzling (WSTG-SESS-08)
      • Testing for Session Hijacking (WSTG-SESS-09)
      • Testing JSON Web Tokens (WSTG-SESS-10)
    • Input Validation Testing
      • Testing for Reflected Cross Site Scripting (WSTG-INPV-01)
      • Testing for Stored Cross Site Scripting (WSTG-INPV-02)
      • Testing for HTTP Verb Tampering (WSTG-INPV-03)
      • Testing for HTTP Parameter Pollution (WSTG-INPV-04)
      • Testing for Oracle
      • Testing for MySQL
      • Testing for SQL Server
      • Testing PostgreSQL
      • Testing for MS Access
      • Testing for NoSQL Injection
      • Testing for ORM Injection
      • Testing for Client-side
      • Testing for SQL Injection (WSTG-INPV-05)
      • Testing for LDAP Injection (WSTG-INPV-06)
      • Testing for XML Injection (WSTG-INPV-07)
      • Testing for SSI Injection (WSTG-INPV-08)
      • Testing for XPath Injection (WSTG-INPV-09)
      • Testing for IMAP SMTP Injection (WSTG-INPV-10)
      • Testing for File Inclusion
      • Testing for Code Injection (WSTG-INPV-11)
      • Testing for Command Injection (WSTG-INPV-12)
      • Testing for Buffer Overflow (WSTG-INPV-13)
      • Testing for Format String Injection (WSTG-INPV-13)
      • Testing for Incubated Vulnerability (WSTG-INPV-14)
      • Testing for HTTP Splitting Smuggling (WSTG-INPV-15)
      • Testing for HTTP Incoming Requests (WSTG-INPV-16)
      • Testing for Host Header Injection (WSTG-INPV-17)
      • Testing for Server-side Template Injection (WSTG-INPV-18)
      • Testing for Server-Side Request Forgery (WSTG-INPV-19)
      • Testing for Mass Assignment (WSTG-INPV-20)
    • Testing for Error Handling
      • Testing for Improper Error Handling (WSTG-ERRH-01)
      • Testing for Stack Traces (WSTG-ERRH-02)
    • Testing for Weak Cryptography
      • Testing for Weak Transport Layer Security (WSTG-CRYP-01)
      • Testing for Padding Oracle (WSTG-CRYP-02)
      • Testing for Sensitive Information Sent via Unencrypted Channels (WSTG-CRYP-03)
      • Testing for Weak Encryption (WSTG-CRYP-04)
    • Business Logic Testing
      • Introduction to Business Logic
      • Test Business Logic Data Validation (WSTG-BUSL-01)
      • Test Ability to Forge Requests (WSTG-BUSL-02)
      • Test Integrity Checks (WSTG-BUSL-03)
      • Test for Process Timing (WSTG-BUSL-04)
      • Test Number of Times a Function Can Be Used Limits (WSTG-BUSL-05)
      • Testing for the Circumvention of Work Flows (WSTG-BUSL-06)
      • Test Defenses Against Application Misuse (WSTG-BUSL-07)
      • Test Upload of Unexpected File Types (WSTG-BUSL-08)
      • Test Upload of Malicious Files (WSTG-BUSL-09)
      • Test Payment Functionality (WSTG-BUSL-10)
    • Client-Side Testing
      • Testing for Self DOM Based Cross-Site Scripting
      • Testing for DOM-Based Cross Site Scripting (WSTG-CLNT-01)
      • Testing for JavaScript Execution (WSTG-CLNT-02)
      • Testing for HTML Injection (WSTG-CLNT-03)
      • Testing for Client-side URL Redirect (WSTG-CLNT-04)
      • Testing for CSS Injection (WSTG-CLNT-05)
      • Testing for Client-side Resource Manipulation (WSTG-CLNT-06)
      • Testing Cross Origin Resource Sharing (WSTG-CLNT-07)
      • Testing for Cross Site Flashing (WSTG-CLNT-08)
      • Testing for Clickjacking (WSTG-CLNT-09)
      • Testing WebSockets (WSTG-CLNT-10)
      • Testing Web Messaging (WSTG-CLNT-11)
      • Testing Browser Storage (WSTG-CLNT-12)
      • Testing for Cross Site Script Inclusion (WSTG-CLNT-13)
      • Testing for Reverse Tabnabbing (WSTG-CLNT-14)
    • API Testing
      • Testing GraphQL (WSTG-APIT-01)
  • Reporting
    • Reporting
    • Vulnerability Naming Schemes
  • Appendix
    • Testing Tools Resource
    • Suggested Reading
    • Fuzz Vectors
    • Encoded Injection
    • History
    • Leveraging Dev Tools
  • Testing Checklist
  • Table of Contents
  • REST Assessment Cheat Sheet
  • API Testing
Powered by GitBook
On this page
  • Summary
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Test Objectives
  • How to Test
  • Specific Testing Method 1
  • Specific Testing Method 2
  • Specific Testing Method 3
  • Related Test Cases
  • Remediation
  • Tools
  • References
  1. Web Application Security Testing
  2. Business Logic Testing

Test Integrity Checks (WSTG-BUSL-03)

ID

WSTG-BUSL-03

Summary

Many applications are designed to display different fields depending on the user of situation by leaving some inputs hidden. However, in many cases it is possible to submit values hidden field values to the server using a proxy. In these cases the server-side controls must be smart enough to perform relational or server-side edits to ensure that the proper data is allowed to the server based on user and application specific business logic.

Additionally, the application must not depend on non-editable controls, drop-down menus or hidden fields for business logic processing because these fields remain non-editable only in the context of the browsers. Users may be able to edit their values using proxy editor tools and try to manipulate business logic. If the application exposes values related to business rules like quantity, etc. as non-editable fields it must maintain a copy on the server-side and use the same for business logic processing. Finally, aside application/system data, log systems must be secured to prevent read, writing and updating.

Business logic integrity check vulnerabilities is unique in that these misuse cases are application specific and if users are able to make changes one should only be able to write or update/edit specific artifacts at specific times per the business process logic.

The application must be smart enough to check for relational edits and not allow users to submit information directly to the server that is not valid, trusted because it came from a non-editable controls or the user is not authorized to submit through the front end. Additionally, system artifacts such as logs must be "protected" from unauthorized read, writing and removal.

Example 1

Imagine an ASP.NET application GUI application that only allows the admin user to change the password for other users in the system. The admin user will see the username and password fields to enter a username and password while other users will not see either field. However, if a non admin user submits information in the username and password field through a proxy they may be able to "trick" the server into believing that the request has come from an admin user and change password of other users.

Example 2

Most web applications have dropdown lists making it easy for the user to quickly select their state, month of birth, etc. Suppose a Project Management application allowed users to login and depending on their privileges presented them with a drop down list of projects they have access to. What happens if an attacker finds the name of another project that they should not have access to and submits the information via a proxy. Will the application give access to the project? They should not have access even though they skipped an authorization business logic check.

Example 3

Suppose the motor vehicle administration system required an employee initially verify each citizens documentation and information when they issue an identification or driver's license. At this point the business process has created data with a high level of integrity as the integrity of submitted data is checked by the application. Now suppose the application is moved to the Internet so employees can log on for full service or citizens can log on for a reduced self-service application to update certain information. At this point an attacker may be able to use an intercepting proxy to add or update data that they should not have access to and they could destroy the integrity of the data by stating that the citizen was not married but supplying data for a spouse’s name. This type of inserting or updating of unverified data destroys the data integrity and might have been prevented if the business process logic was followed.

Example 4

Many systems include logging for auditing and troubleshooting purposes. But, how good/valid is the information in these logs? Can they be manipulated by attackers either intentionally or accidentally having their integrity destroyed?

Test Objectives

  • Review the project documentation for components of the system that move, store, or handle data.

  • Determine what type of data is logically acceptable by the component and what types the system should guard against.

  • Determine who should be allowed to modify or read that data in each component.

  • Attempt to insert, update, or delete data values used by each component that should not be allowed per the business logic workflow.

How to Test

Specific Testing Method 1

  • Using a proxy capture HTTP traffic looking for hidden fields.

  • If a hidden field is found see how these fields compare with the GUI application and start interrogating this value through the proxy by submitting different data values trying to circumvent the business process and manipulate values you were not intended to have access to.

Specific Testing Method 2

  • Using a proxy capture HTTP traffic looking for a place to insert information into areas of the application that are non-editable.

  • If it is found see how these fields compare with the GUI application and start interrogating this value through the proxy by submitting different data values trying to circumvent the business process and manipulate values you were not intended to have access to.

Specific Testing Method 3

  • List components of the application or system that could be impacted, for example logs or databases.

  • For each component identified, try to read, edit or remove its information. For example log files should be identified and Testers should try to manipulate the data/information being collected.

Related Test Cases

Remediation

The application should follow strict access controls on how data and artifacts can be modified and read, and through trusted channels that ensure the integrity of the data. Proper logging should be set in place to review and ensure that no unauthorized access or modification is happening.

Tools

  • Various system/application tools such as editors and file manipulation tools.

References

PreviousTest Ability to Forge Requests (WSTG-BUSL-02)NextTest for Process Timing (WSTG-BUSL-04)

Last updated 2 years ago

All test cases.

Input Validation
OWASP Zed Attack Proxy (ZAP)
Burp Suite
Implementing Referential Integrity and Shared Business Logic in a RDB
On Rules and Integrity Constraints in Database Systems
Use referential integrity to enforce basic business rules in Oracle
Maximizing Business Logic Reuse with Reactive Logic