OWASP Testing Guide
  • Foreword by Eoin Keary
  • Frontispiece
  • Introduction
  • The OWASP Testing Framework
    • The Web Security Testing Framework
    • Penetration Testing Methodologies
  • Web Application Security Testing
    • Introduction and Objectives
    • Information Gathering
      • Conduct Search Engine Discovery Reconnaissance for Information Leakage (WSTG-INFO-01)
      • Fingerprint Web Server (WSTG-INFO-02)
      • Review Webserver Metafiles for Information Leakage (WSTG-INFO-03)
      • Enumerate Applications on Webserver (WSTG-INFO-04)
      • Review Webpage Content for Information Leakage (WSTG-INFO-05)
      • Identify Application Entry Points (WSTG-INFO-06)
      • Map Execution Paths Through Application (WSTG-INFO-07)
      • Fingerprint Web Application Framework (WSTG-INFO-08)
      • Fingerprint Web Application (WSTG-INFO-09)
      • Map Application Architecture (WSTG-INFO-10)
    • Configuration and Deployment Management Testing
      • Test Network Infrastructure Configuration (WSTG-CONF-01)
      • Test Application Platform Configuration (WSTG-CONF-02)
      • Test File Extensions Handling for Sensitive Information (WSTG-CONF-03)
      • Review Old Backup and Unreferenced Files for Sensitive Information (WSTG-CONF-04)
      • Enumerate Infrastructure and Application Admin Interfaces (WSTG-CONF-05)
      • Test HTTP Methods (WSTG-CONF-06)
      • Test HTTP Strict Transport Security (WSTG-CONF-07)
      • Test RIA Cross Domain Policy (WSTG-CONF-08)
      • Test File Permission (WSTG-CONF-09)
      • Test for Subdomain Takeover (WSTG-CONF-10)
      • Test Cloud Storage (WSTG-CONF-11)
      • Testing for Content Security Policy (WSTG-CONF-12)
    • Identity Management Testing
      • Test Role Definitions (WSTG-IDNT-01)
      • Test User Registration Process (WSTG-IDNT-02)
      • Test Account Provisioning Process (WSTG-IDNT-03)
      • Testing for Account Enumeration and Guessable User Account (WSTG-IDNT-04)
      • Testing for Weak or Unenforced Username Policy (WSTG-IDNT-05)
    • Authentication Testing
      • Testing for Credentials Transported over an Encrypted Channel (WSTG-ATHN-01)
      • Testing for Default Credentials (WSTG-ATHN-02)
      • Testing for Weak Lock Out Mechanism (WSTG-ATHN-03)
      • Testing for Bypassing Authentication Schema (WSTG-ATHN-04)
      • Testing for Vulnerable Remember Password (WSTG-ATHN-05)
      • Testing for Browser Cache Weaknesses (WSTG-ATHN-06)
      • Testing for Weak Password Policy (WSTG-ATHN-07)
      • Testing for Weak Security Question Answer (WSTG-ATHN-08)
      • Testing for Weak Password Change or Reset Functionalities (WSTG-ATHN-09)
      • Testing for Weaker Authentication in Alternative Channel (WSTG-ATHN-10)
      • Testing Multi-Factor Authentication (MFA) (WSTG-AUTH-11)
    • Authorization Testing
      • Testing Directory Traversal File Include (WSTG-ATHZ-01)
      • Testing for Bypassing Authorization Schema (WSTG-ATHZ-02)
      • Testing for Privilege Escalation (WSTG-ATHZ-03)
      • Testing for Insecure Direct Object References (WSTG-ATHZ-04)
      • Testing for OAuth Authorization Server Weaknesses
      • Testing for OAuth Client Weaknesses
      • Testing for OAuth Weaknesses (WSTG-ATHZ-05)
    • Session Management Testing
      • Testing for Session Management Schema (WSTG-SESS-01)
      • Testing for Cookies Attributes (WSTG-SESS-02)
      • Testing for Session Fixation (WSTG-SESS-03)
      • Testing for Exposed Session Variables (WSTG-SESS-04)
      • Testing for Cross Site Request Forgery (WSTG-SESS-05)
      • Testing for Logout Functionality (WSTG-SESS-06)
      • Testing Session Timeout (WSTG-SESS-07)
      • Testing for Session Puzzling (WSTG-SESS-08)
      • Testing for Session Hijacking (WSTG-SESS-09)
      • Testing JSON Web Tokens (WSTG-SESS-10)
    • Input Validation Testing
      • Testing for Reflected Cross Site Scripting (WSTG-INPV-01)
      • Testing for Stored Cross Site Scripting (WSTG-INPV-02)
      • Testing for HTTP Verb Tampering (WSTG-INPV-03)
      • Testing for HTTP Parameter Pollution (WSTG-INPV-04)
      • Testing for Oracle
      • Testing for MySQL
      • Testing for SQL Server
      • Testing PostgreSQL
      • Testing for MS Access
      • Testing for NoSQL Injection
      • Testing for ORM Injection
      • Testing for Client-side
      • Testing for SQL Injection (WSTG-INPV-05)
      • Testing for LDAP Injection (WSTG-INPV-06)
      • Testing for XML Injection (WSTG-INPV-07)
      • Testing for SSI Injection (WSTG-INPV-08)
      • Testing for XPath Injection (WSTG-INPV-09)
      • Testing for IMAP SMTP Injection (WSTG-INPV-10)
      • Testing for File Inclusion
      • Testing for Code Injection (WSTG-INPV-11)
      • Testing for Command Injection (WSTG-INPV-12)
      • Testing for Buffer Overflow (WSTG-INPV-13)
      • Testing for Format String Injection (WSTG-INPV-13)
      • Testing for Incubated Vulnerability (WSTG-INPV-14)
      • Testing for HTTP Splitting Smuggling (WSTG-INPV-15)
      • Testing for HTTP Incoming Requests (WSTG-INPV-16)
      • Testing for Host Header Injection (WSTG-INPV-17)
      • Testing for Server-side Template Injection (WSTG-INPV-18)
      • Testing for Server-Side Request Forgery (WSTG-INPV-19)
      • Testing for Mass Assignment (WSTG-INPV-20)
    • Testing for Error Handling
      • Testing for Improper Error Handling (WSTG-ERRH-01)
      • Testing for Stack Traces (WSTG-ERRH-02)
    • Testing for Weak Cryptography
      • Testing for Weak Transport Layer Security (WSTG-CRYP-01)
      • Testing for Padding Oracle (WSTG-CRYP-02)
      • Testing for Sensitive Information Sent via Unencrypted Channels (WSTG-CRYP-03)
      • Testing for Weak Encryption (WSTG-CRYP-04)
    • Business Logic Testing
      • Introduction to Business Logic
      • Test Business Logic Data Validation (WSTG-BUSL-01)
      • Test Ability to Forge Requests (WSTG-BUSL-02)
      • Test Integrity Checks (WSTG-BUSL-03)
      • Test for Process Timing (WSTG-BUSL-04)
      • Test Number of Times a Function Can Be Used Limits (WSTG-BUSL-05)
      • Testing for the Circumvention of Work Flows (WSTG-BUSL-06)
      • Test Defenses Against Application Misuse (WSTG-BUSL-07)
      • Test Upload of Unexpected File Types (WSTG-BUSL-08)
      • Test Upload of Malicious Files (WSTG-BUSL-09)
      • Test Payment Functionality (WSTG-BUSL-10)
    • Client-Side Testing
      • Testing for Self DOM Based Cross-Site Scripting
      • Testing for DOM-Based Cross Site Scripting (WSTG-CLNT-01)
      • Testing for JavaScript Execution (WSTG-CLNT-02)
      • Testing for HTML Injection (WSTG-CLNT-03)
      • Testing for Client-side URL Redirect (WSTG-CLNT-04)
      • Testing for CSS Injection (WSTG-CLNT-05)
      • Testing for Client-side Resource Manipulation (WSTG-CLNT-06)
      • Testing Cross Origin Resource Sharing (WSTG-CLNT-07)
      • Testing for Cross Site Flashing (WSTG-CLNT-08)
      • Testing for Clickjacking (WSTG-CLNT-09)
      • Testing WebSockets (WSTG-CLNT-10)
      • Testing Web Messaging (WSTG-CLNT-11)
      • Testing Browser Storage (WSTG-CLNT-12)
      • Testing for Cross Site Script Inclusion (WSTG-CLNT-13)
      • Testing for Reverse Tabnabbing (WSTG-CLNT-14)
    • API Testing
      • Testing GraphQL (WSTG-APIT-01)
  • Reporting
    • Reporting
    • Vulnerability Naming Schemes
  • Appendix
    • Testing Tools Resource
    • Suggested Reading
    • Fuzz Vectors
    • Encoded Injection
    • History
    • Leveraging Dev Tools
  • Testing Checklist
  • Table of Contents
  • REST Assessment Cheat Sheet
  • API Testing
Powered by GitBook
On this page
  • Summary
  • Test Objectives
  • How to Test
  • Banner Grabbing
  • Sending Malformed Requests
  • Using Automated Scanning Tools
  • Remediation
  1. Web Application Security Testing
  2. Information Gathering

Fingerprint Web Server (WSTG-INFO-02)

PreviousConduct Search Engine Discovery Reconnaissance for Information Leakage (WSTG-INFO-01)NextReview Webserver Metafiles for Information Leakage (WSTG-INFO-03)

Last updated 2 years ago

ID

WSTG-INFO-02

Summary

Web server fingerprinting is the task of identifying the type and version of web server that a target is running on. While web server fingerprinting is often encapsulated in automated testing tools, it is important for researchers to understand the fundamentals of how these tools attempt to identify software, and why this is useful.

Accurately discovering the type of web server that an application runs on can enable security testers to determine if the application is vulnerable to attack. In particular, servers running older versions of software without up-to-date security patches can be susceptible to known version-specific exploits.

Test Objectives

  • Determine the version and type of a running web server to enable further discovery of any known vulnerabilities.

How to Test

Techniques used for web server fingerprinting include , eliciting responses to malformed requests, and using automated tools to perform more robust scans that use a combination of tactics. The fundamental premise by which all these techniques operate is the same. They all strive to elicit some response from the web server which can then be compared to a database of known responses and behaviors, and thus matched to a known server type.

Banner Grabbing

A banner grab is performed by sending an HTTP request to the web server and examining its . This can be accomplished using a variety of tools, including telnet for HTTP requests, or openssl for requests over TLS/SSL.

For example, here is the response to a request from an Apache server.

HTTP/1.1 200 OK
Date: Thu, 05 Sep 2019 17:42:39 GMT
Server: Apache/2.4.41 (Unix)
Last-Modified: Thu, 05 Sep 2019 17:40:42 GMT
ETag: "75-591d1d21b6167"
Accept-Ranges: bytes
Content-Length: 117
Connection: close
Content-Type: text/html
...

Here is another response, this time from nginx.

HTTP/1.1 200 OK
Server: nginx/1.17.3
Date: Thu, 05 Sep 2019 17:50:24 GMT
Content-Type: text/html
Content-Length: 117
Last-Modified: Thu, 05 Sep 2019 17:40:42 GMT
Connection: close
ETag: "5d71489a-75"
Accept-Ranges: bytes
...

Here's what a response from lighttpd looks like.

HTTP/1.0 200 OK
Content-Type: text/html
Accept-Ranges: bytes
ETag: "4192788355"
Last-Modified: Thu, 05 Sep 2019 17:40:42 GMT
Content-Length: 117
Connection: close
Date: Thu, 05 Sep 2019 17:57:57 GMT
Server: lighttpd/1.4.54

In these examples, the server type and version is clearly exposed. However, security-conscious applications may obfuscate their server information by modifying the header. For example, here is an excerpt from the response to a request for a site with a modified header:

HTTP/1.1 200 OK
Server: Website.com
Date: Thu, 05 Sep 2019 17:57:06 GMT
Content-Type: text/html; charset=utf-8
Status: 200 OK
...

In cases where the server information is obscured, testers may guess the type of server based on the ordering of the header fields. Note that in the Apache example above, the fields follow this order:

  • Date

  • Server

  • Last-Modified

  • ETag

  • Accept-Ranges

  • Content-Length

  • Connection

  • Content-Type

However, in both the nginx and obscured server examples, the fields in common follow this order:

  • Server

  • Date

  • Content-Type

Testers can use this information to guess that the obscured server is nginx. However, considering that a number of different web servers may share the same field ordering and fields can be modified or removed, this method is not definite.

Sending Malformed Requests

Web servers may be identified by examining their error responses, and in the cases where they have not been customized, their default error pages. One way to compel a server to present these is by sending intentionally incorrect or malformed requests.

For example, here is the response to a request for the non-existent method SANTA CLAUS from an Apache server.

GET / SANTA CLAUS/1.1


HTTP/1.1 400 Bad Request
Date: Fri, 06 Sep 2019 19:21:01 GMT
Server: Apache/2.4.41 (Unix)
Content-Length: 226
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>400 Bad Request</title>
</head><body>
<h1>Bad Request</h1>
<p>Your browser sent a request that this server could not understand.<br />
</p>
</body></html>

Here is the response to the same request from nginx.

GET / SANTA CLAUS/1.1


<html>
<head><title>404 Not Found</title></head>
<body>
<center><h1>404 Not Found</h1></center>
<hr><center>nginx/1.17.3</center>
</body>
</html>

Here is the response to the same request from lighttpd.

GET / SANTA CLAUS/1.1


HTTP/1.0 400 Bad Request
Content-Type: text/html
Content-Length: 345
Connection: close
Date: Sun, 08 Sep 2019 21:56:17 GMT
Server: lighttpd/1.4.54

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
  <title>400 Bad Request</title>
 </head>
 <body>
  <h1>400 Bad Request</h1>
 </body>
</html>

As default error pages offer many differentiating factors between types of web servers, their examination can be an effective method for fingerprinting even when server header fields are obscured.

Using Automated Scanning Tools

As stated earlier, web server fingerprinting is often included as a functionality of automated scanning tools. These tools are able to make requests similar to those demonstrated above, as well as send other more server-specific probes. Automated tools can compare responses from web servers much faster than manual testing, and utilize large databases of known responses to attempt server identification. For these reasons, automated tools are more likely to produce accurate results.

Here are some commonly-used scan tools that include web server fingerprinting functionality.

Remediation

While exposed server information is not necessarily in itself a vulnerability, it is information that can assist attackers in exploiting other vulnerabilities that may exist. Exposed server information can also lead attackers to find version-specific server vulnerabilities that can be used to exploit unpatched servers. For this reason it is recommended that some precautions be taken. These actions include:

  • Ensuring that web servers are kept up-to-date with the latest software and security patches.

, an online tool that scans websites for information, including the web server.

, an Open Source command-line scanning tool.

, an Open Source command-line tool that also has a GUI, .

Obscuring web server information in headers, such as with Apache's .

Using a hardened to create an additional layer of security between the web server and the Internet.

banner grabbing
response header
Netcraft
Nikto
Nmap
Zenmap
mod_headers module
reverse proxy server