OWASP Testing Guide
  • Foreword by Eoin Keary
  • Frontispiece
  • Introduction
  • The OWASP Testing Framework
    • The Web Security Testing Framework
    • Penetration Testing Methodologies
  • Web Application Security Testing
    • Introduction and Objectives
    • Information Gathering
      • Conduct Search Engine Discovery Reconnaissance for Information Leakage (WSTG-INFO-01)
      • Fingerprint Web Server (WSTG-INFO-02)
      • Review Webserver Metafiles for Information Leakage (WSTG-INFO-03)
      • Enumerate Applications on Webserver (WSTG-INFO-04)
      • Review Webpage Content for Information Leakage (WSTG-INFO-05)
      • Identify Application Entry Points (WSTG-INFO-06)
      • Map Execution Paths Through Application (WSTG-INFO-07)
      • Fingerprint Web Application Framework (WSTG-INFO-08)
      • Fingerprint Web Application (WSTG-INFO-09)
      • Map Application Architecture (WSTG-INFO-10)
    • Configuration and Deployment Management Testing
      • Test Network Infrastructure Configuration (WSTG-CONF-01)
      • Test Application Platform Configuration (WSTG-CONF-02)
      • Test File Extensions Handling for Sensitive Information (WSTG-CONF-03)
      • Review Old Backup and Unreferenced Files for Sensitive Information (WSTG-CONF-04)
      • Enumerate Infrastructure and Application Admin Interfaces (WSTG-CONF-05)
      • Test HTTP Methods (WSTG-CONF-06)
      • Test HTTP Strict Transport Security (WSTG-CONF-07)
      • Test RIA Cross Domain Policy (WSTG-CONF-08)
      • Test File Permission (WSTG-CONF-09)
      • Test for Subdomain Takeover (WSTG-CONF-10)
      • Test Cloud Storage (WSTG-CONF-11)
      • Testing for Content Security Policy (WSTG-CONF-12)
    • Identity Management Testing
      • Test Role Definitions (WSTG-IDNT-01)
      • Test User Registration Process (WSTG-IDNT-02)
      • Test Account Provisioning Process (WSTG-IDNT-03)
      • Testing for Account Enumeration and Guessable User Account (WSTG-IDNT-04)
      • Testing for Weak or Unenforced Username Policy (WSTG-IDNT-05)
    • Authentication Testing
      • Testing for Credentials Transported over an Encrypted Channel (WSTG-ATHN-01)
      • Testing for Default Credentials (WSTG-ATHN-02)
      • Testing for Weak Lock Out Mechanism (WSTG-ATHN-03)
      • Testing for Bypassing Authentication Schema (WSTG-ATHN-04)
      • Testing for Vulnerable Remember Password (WSTG-ATHN-05)
      • Testing for Browser Cache Weaknesses (WSTG-ATHN-06)
      • Testing for Weak Password Policy (WSTG-ATHN-07)
      • Testing for Weak Security Question Answer (WSTG-ATHN-08)
      • Testing for Weak Password Change or Reset Functionalities (WSTG-ATHN-09)
      • Testing for Weaker Authentication in Alternative Channel (WSTG-ATHN-10)
      • Testing Multi-Factor Authentication (MFA) (WSTG-AUTH-11)
    • Authorization Testing
      • Testing Directory Traversal File Include (WSTG-ATHZ-01)
      • Testing for Bypassing Authorization Schema (WSTG-ATHZ-02)
      • Testing for Privilege Escalation (WSTG-ATHZ-03)
      • Testing for Insecure Direct Object References (WSTG-ATHZ-04)
      • Testing for OAuth Authorization Server Weaknesses
      • Testing for OAuth Client Weaknesses
      • Testing for OAuth Weaknesses (WSTG-ATHZ-05)
    • Session Management Testing
      • Testing for Session Management Schema (WSTG-SESS-01)
      • Testing for Cookies Attributes (WSTG-SESS-02)
      • Testing for Session Fixation (WSTG-SESS-03)
      • Testing for Exposed Session Variables (WSTG-SESS-04)
      • Testing for Cross Site Request Forgery (WSTG-SESS-05)
      • Testing for Logout Functionality (WSTG-SESS-06)
      • Testing Session Timeout (WSTG-SESS-07)
      • Testing for Session Puzzling (WSTG-SESS-08)
      • Testing for Session Hijacking (WSTG-SESS-09)
      • Testing JSON Web Tokens (WSTG-SESS-10)
    • Input Validation Testing
      • Testing for Reflected Cross Site Scripting (WSTG-INPV-01)
      • Testing for Stored Cross Site Scripting (WSTG-INPV-02)
      • Testing for HTTP Verb Tampering (WSTG-INPV-03)
      • Testing for HTTP Parameter Pollution (WSTG-INPV-04)
      • Testing for Oracle
      • Testing for MySQL
      • Testing for SQL Server
      • Testing PostgreSQL
      • Testing for MS Access
      • Testing for NoSQL Injection
      • Testing for ORM Injection
      • Testing for Client-side
      • Testing for SQL Injection (WSTG-INPV-05)
      • Testing for LDAP Injection (WSTG-INPV-06)
      • Testing for XML Injection (WSTG-INPV-07)
      • Testing for SSI Injection (WSTG-INPV-08)
      • Testing for XPath Injection (WSTG-INPV-09)
      • Testing for IMAP SMTP Injection (WSTG-INPV-10)
      • Testing for File Inclusion
      • Testing for Code Injection (WSTG-INPV-11)
      • Testing for Command Injection (WSTG-INPV-12)
      • Testing for Buffer Overflow (WSTG-INPV-13)
      • Testing for Format String Injection (WSTG-INPV-13)
      • Testing for Incubated Vulnerability (WSTG-INPV-14)
      • Testing for HTTP Splitting Smuggling (WSTG-INPV-15)
      • Testing for HTTP Incoming Requests (WSTG-INPV-16)
      • Testing for Host Header Injection (WSTG-INPV-17)
      • Testing for Server-side Template Injection (WSTG-INPV-18)
      • Testing for Server-Side Request Forgery (WSTG-INPV-19)
      • Testing for Mass Assignment (WSTG-INPV-20)
    • Testing for Error Handling
      • Testing for Improper Error Handling (WSTG-ERRH-01)
      • Testing for Stack Traces (WSTG-ERRH-02)
    • Testing for Weak Cryptography
      • Testing for Weak Transport Layer Security (WSTG-CRYP-01)
      • Testing for Padding Oracle (WSTG-CRYP-02)
      • Testing for Sensitive Information Sent via Unencrypted Channels (WSTG-CRYP-03)
      • Testing for Weak Encryption (WSTG-CRYP-04)
    • Business Logic Testing
      • Introduction to Business Logic
      • Test Business Logic Data Validation (WSTG-BUSL-01)
      • Test Ability to Forge Requests (WSTG-BUSL-02)
      • Test Integrity Checks (WSTG-BUSL-03)
      • Test for Process Timing (WSTG-BUSL-04)
      • Test Number of Times a Function Can Be Used Limits (WSTG-BUSL-05)
      • Testing for the Circumvention of Work Flows (WSTG-BUSL-06)
      • Test Defenses Against Application Misuse (WSTG-BUSL-07)
      • Test Upload of Unexpected File Types (WSTG-BUSL-08)
      • Test Upload of Malicious Files (WSTG-BUSL-09)
      • Test Payment Functionality (WSTG-BUSL-10)
    • Client-Side Testing
      • Testing for Self DOM Based Cross-Site Scripting
      • Testing for DOM-Based Cross Site Scripting (WSTG-CLNT-01)
      • Testing for JavaScript Execution (WSTG-CLNT-02)
      • Testing for HTML Injection (WSTG-CLNT-03)
      • Testing for Client-side URL Redirect (WSTG-CLNT-04)
      • Testing for CSS Injection (WSTG-CLNT-05)
      • Testing for Client-side Resource Manipulation (WSTG-CLNT-06)
      • Testing Cross Origin Resource Sharing (WSTG-CLNT-07)
      • Testing for Cross Site Flashing (WSTG-CLNT-08)
      • Testing for Clickjacking (WSTG-CLNT-09)
      • Testing WebSockets (WSTG-CLNT-10)
      • Testing Web Messaging (WSTG-CLNT-11)
      • Testing Browser Storage (WSTG-CLNT-12)
      • Testing for Cross Site Script Inclusion (WSTG-CLNT-13)
      • Testing for Reverse Tabnabbing (WSTG-CLNT-14)
    • API Testing
      • Testing GraphQL (WSTG-APIT-01)
  • Reporting
    • Reporting
    • Vulnerability Naming Schemes
  • Appendix
    • Testing Tools Resource
    • Suggested Reading
    • Fuzz Vectors
    • Encoded Injection
    • History
    • Leveraging Dev Tools
  • Testing Checklist
  • Table of Contents
  • REST Assessment Cheat Sheet
  • API Testing
Powered by GitBook
On this page
  • Summary
  • Test Objectives
  • How to Test
  • The Value of a Parameter Is Used Directly to Retrieve a Database Record
  • The Value of a Parameter Is Used Directly to Perform an Operation in the System
  • The Value of a Parameter Is Used Directly to Retrieve a File System Resource
  • The Value of a Parameter Is Used Directly to Access Application Functionality
  • References
  1. Web Application Security Testing
  2. Authorization Testing

Testing for Insecure Direct Object References (WSTG-ATHZ-04)

ID

WSTG-ATHZ-04

Summary

Insecure Direct Object References (IDOR) occur when an application provides direct access to objects based on user-supplied input. As a result of this vulnerability attackers can bypass authorization and access resources in the system directly, for example database records or files. Insecure Direct Object References allow attackers to bypass authorization and access resources directly by modifying the value of a parameter used to directly point to an object. Such resources can be database entries belonging to other users, files in the system, and more. This is caused by the fact that the application takes user supplied input and uses it to retrieve an object without performing sufficient authorization checks.

Test Objectives

  • Identify points where object references may occur.

  • Assess the access control measures and if they're vulnerable to IDOR.

How to Test

To test for this vulnerability the tester first needs to map out all locations in the application where user input is used to reference objects directly. For example, locations where user input is used to access a database row, a file, application pages and more. Next the tester should modify the value of the parameter used to reference objects and assess whether it is possible to retrieve objects belonging to other users or otherwise bypass authorization.

The best way to test for direct object references would be by having at least two (often more) users to cover different owned objects and functions. For example two users each having access to different objects (such as purchase information, private messages, etc.), and (if relevant) users with different privileges (for example administrator users) to see whether there are direct references to application functionality. By having multiple users the tester saves valuable testing time in guessing different object names as he can attempt to access objects that belong to the other user.

Below are several typical scenarios for this vulnerability and the methods to test for each:

The Value of a Parameter Is Used Directly to Retrieve a Database Record

Sample request:

http://foo.bar/somepage?invoice=12345

In this case, the value of the invoice parameter is used as an index in an invoices table in the database. The application takes the value of this parameter and uses it in a query to the database. The application then returns the invoice information to the user.

Since the value of invoice goes directly into the query, by modifying the value of the parameter it is possible to retrieve any invoice object, regardless of the user to whom the invoice belongs. To test for this case the tester should obtain the identifier of an invoice belonging to a different test user (ensuring he is not supposed to view this information per application business logic), and then check whether it is possible to access objects without authorization.

The Value of a Parameter Is Used Directly to Perform an Operation in the System

Sample request:

http://foo.bar/changepassword?user=someuser

In this case, the value of the user parameter is used to tell the application for which user it should change the password. In many cases this step will be a part of a wizard, or a multi-step operation. In the first step the application will get a request stating for which user's password is to be changed, and in the next step the user will provide a new password (without asking for the current one).

The user parameter is used to directly reference the object of the user for whom the password change operation will be performed. To test for this case the tester should attempt to provide a different test username than the one currently logged in, and check whether it is possible to modify the password of another user.

The Value of a Parameter Is Used Directly to Retrieve a File System Resource

Sample request:

http://foo.bar/showImage?img=img00011

In this case, the value of the file parameter is used to tell the application what file the user intends to retrieve. By providing the name or identifier of a different file (for example file=image00012.jpg) the attacker will be able to retrieve objects belonging to other users.

The Value of a Parameter Is Used Directly to Access Application Functionality

Sample request:

http://foo.bar/accessPage?menuitem=12

In this case, the value of the menuitem parameter is used to tell the application which menu item (and therefore which application functionality) the user is attempting to access. Assume the user is supposed to be restricted and therefore has links available only to access to menu items 1, 2 and 3. By modifying the value of menuitem parameter it is possible to bypass authorization and access additional application functionality. To test for this case the tester identifies a location where application functionality is determined by reference to a menu item, maps the values of menu items the given test user can access, and then attempts other menu items.

In the above examples the modification of a single parameter is sufficient. However, sometimes the object reference may be split between more than one parameter, and testing should be adjusted accordingly.

References

PreviousTesting for Privilege Escalation (WSTG-ATHZ-03)NextTesting for OAuth Authorization Server Weaknesses

Last updated 2 years ago

To test for this case, the tester should obtain a reference the user is not supposed to be able to access and attempt to access it by using it as the value of file parameter. Note: This vulnerability is often exploited in conjunction with a directory/path traversal vulnerability (see )

Testing for Path Traversal
Top 10 2013-A4-Insecure Direct Object References